skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anderson, Dave"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We compute the Euler characteristic of the structure sheaf of the Brill–Noether locus of linear series with special vanishing at up to two marked points. When the Brill–Noether number $$\rho $$ is zero, we recover the Castelnuovo formula for the number of special linear series on a general curve; when $$\rho =1$$, we recover the formulas of Eisenbud-Harris, Pirola, and Chan–MartĂ­n–Pflueger–Teixidor for the arithmetic genus of a Brill–Noether curve of special divisors. These computations are obtained as applications of a new determinantal formula for the $$K$$-theory class of certain degeneracy loci. Our degeneracy locus formula also specializes to new determinantal expressions for the double Grothendieck polynomials corresponding to 321-avoiding permutations and gives double versions of the flagged skew Grothendieck polynomials recently introduced by Matsumura. Our result extends the formula of Billey–Jockusch–Stanley expressing Schubert polynomials for 321-avoiding permutations as generating functions for flagged skew tableaux. 
    more » « less